Scanned with CamScanner

Chapter 3; Data Types, Variables: and Arrays

Here are several examples of variable declarations of various types: Note that some
include an initialization.

., <

int a, b, ¢ 7/ declares three ints, a, P and ¢ g

int 4 = 3, e, £ =5; // declares three more ints: initializing f

“ // dand £, ” >

byte z = 22; //-initializes z. 2
double pi = 3.14159; // declares an approximation of pi-
char x = 'xX'; // the variable x has the value * % g

The identifiers that you choose have nothing intrinsic in their names that indicates
their type. Many readers will remember when FORTRAN predefined all identifiers
from I through N to be of type INTEGER while all other .dentifiers were REAL. Java
allows any properly formed identifier to have any declared type-

-

pynamic Initialization
Although the preceding examples have used only constants as initializers, Java allows
~ variables to be initialized dynamically, using any expression valid at the time the varjable
is declared. : :
For example, here is a short program that computes the length of the hypotenuse of
aright triangle given the lengths of its two opposing sides:

// Demonstrate dynamic initiarizationf
class DynInit { 9 : :
. |

public static void main(String b o)

double a = 3.0, b = 4.0;

/) ¢ is dynamically initialized
double c = Math.sgrt(a * a + b..* b

P]

' System,out.println("HypOtenuse g0 +iC)g

three local variables—a, b,and c—are declared. The first two, a and b, are
by constants. However, ¢ 15 101112 ized dynamicall > lengthof the
P | using © % gOfea-n 2 The Progr am uses an ther Qf]aw'g -

w'_ L o= - ﬁ; AXAQRLL L 1dOS w _“'

B i e

Scanned with CamScanner

e Tap®yd

-‘ Java™ 2: The € omplete Referenc

DR cotime of Variables e
mesm L".ﬂ have been declared at the start of the main() me

hr.iﬂ the vatiables U s to be declared within any block. As exfla.med
However{/-38 v ith an opening curly brace and ended by a closing curly

Chapter b k, you are creating
ot e ime vou start a new block, you are creating
brace. A block defines a scope. Thus, each time y - ogramiTing experience, a

bably know from your previous @2
%ﬁa??bj:ctsyare visible to other parts of your program. [t also determin
scope

B o ages define two general categories of 5€0 es: glol'aal '

Most other computer langu » eral et

it t f 1t we 7
ms_e’t;a tional scopes do no : |
our:med model. While it‘is/ﬁ:itible tqgreate what amounts to being a gll(:bal sdcope,
it is by far the exception, not the ruleE Java, the two major scopes are those defined
hod. Even this distinction 1s somewhat arfificial,

. a class and those defined by a mett : : Tal.
e Mmte has several unique properties and attributes that do ng
| apply to the scope defined by a method, this distinction makes some sense. Because of -

the differences, a discussion of class scope (and variables declared WithiI:l it) is d.ef' o
until Chapter 6, when classes are described. For now, we will only examine the scop
defined by or within a method. -‘

-

k will look more closely at parameters Mapter 5, tor the sake of this discussion,
work the same as any other method variable. s
eneral rule, variables declargd inside a scope are not visible (that is, accessible)
‘ ined outside that scope. Thus, when you declare a variable withina
Ope, you are localizing that variable and protecting it from unauthorized access and/
modificaion., Indeed, the scope rules provide the foundation for encapsulation. .
: ’_ can be nested. For example, each time you create a block of code, you al'e

-atilig a new, nested scope. When this occurs, the outer scope encloses the inner scop

"!DOpe SoYS ﬂHow 'atObjeCtStﬁeclared in the outer scope will be visible to code within the
ner . ever, the reverse is not - o ' &
[not be visible outside it ot true. Objects declared within the inner scope

: scope defined by a method begins with its opening curly brace. However, if
that method has parameters, they too are included within the method’s scope. Althoug

T erstand the effect Qf nested scopes, consider the following program:

e tﬁ;ﬁiﬂ‘_ leCk SCOpé g : {: .:l_
e i :;

UString axgs(]), ¢ Loy At
R A SR e A iy 1 e
Nk TEERT Ehll} WAL, o SRt R
: e T 2 LT Ve AT 420,
Fhon o7 e v QR
b 8 § B R A e e s

e B, T i ol TSNP
il ; R 4 i

*\-.\ "‘:""“‘"}l}b"}; . “i‘
LS 1 i ‘::i‘ 8 s‘:'
Sl et
Scanned with CamScanner

Data Types, variables,

i A
V int y = 20; // known
Only to y
this block

Jloxand Yy both knowH he
System.out.println("x ange.
- ik o Jenali | Yi " hoxoponon oy Y)i

}

/7y = 100; // Brroy|

VY HOR known h
ere
}
}

// x 1is still known here

System.out.println("x ig » :
X)i

As the comments indicate, the variable x ig declared at the start of main()’s scope and

is accessible to al.l subsequent code within main(). Within the if block, y is declared.

Since a block defines a scope, y is only visible to other code within its block. This is

why outside of its block, the line y = 100; is commented out. If you remove the leading
comment symbol, a compile-time error will occur, because y is not visible outside of its
block. Within the if block, x can be used because code within a block (thatis, anested _
scope) has access to variables declared by an enclosing scope.

Within a block, variables can be declared at any point, but are valid only after they
are declared. Thus, if you define a variable at the start of a method, it is available to all
of the code within that method. Conversely, if you declare a variable at the end of a
block, it is effectively useless, because no code will have access to it. For example, this

fragment is invalid because count cannot be used prior to its declaration:

// This fragment is wrong!
count = 100; // oops! cannot use count before it 1s declared!

int count;

member: variables are created when their

scope is entered, and destroyed when their scope is left. This means that a variable
will not hold its value once it has gone out of scope. Therefore, variables declared
Within a method will not hold their values between calls to that mgthod. Also, a
Variable declared within a block will lose its value when the block is left. Thus, the

Here is another important point to re

e

» : : ined to its scope.
e i) € S e

. <.
Scanned with CamScanner

